您所在的位置: 首页 --> 导师团队 --> 孙应实

导师基本信息

  • 姓名:孙应实
  • 性别:
  • 民族:汉族
  • 科室:医学影像科
  • 职称:主任医师,教授
  • 专业:影像医学与核医学、放射影像学
  • E-MAIL: sunysabc@163.com

学术论文 | 奖励表彰 | 学术成果 | 科研项目 | 招生计划

Li QY#, Yang D, Guan Z, Yan XY, Li XT, Sun RJ, Lu QY, Zhang XY#*, Sun YS*. Extranodal Extension at Pretreatment MRI and the Prognostic Value for Patients with Rectal Cancer,Radiology,2024 Mar;310(3):e232605.

Liu YL, Zhu HB, Chen ML, Sun W, Li XT, Sun YS. Prediction of the lymphatic, microvascular, and perineural invasion of pancreatic neuroendocrine tumors using preoperative magnetic resonance imaging,World J Gastrointest Surg,World J Gastrointest Surg. 2023 Dec 27;15(12):2809-2819. doi: 10.4240/wjgs.v15.i12.2809.

Zhao B, Yan S, Jia ZY, Zhu HT, Shi YJ, Li XT, Qu JR, Sun YS. CT radiomics in the identification of preoperative understaging in patients with clinical stage T1-2N0 esophageal squamous cell carcinoma,Quant Imaging Med Surg,Quant Imaging Med Surg. 2023 Dec 1;13(12):7996-8008. doi: 10.21037/qims-23-275. Epub 2023 Nov 13.

Wang ZL, Yan Y, Li XT, Li YL, Li ZW, Sun YS. Usefulness of attenuation value on computed tomography plain scan for diagnosing enlarged mediastinal lymph nodes metastases,Quant Imaging Med Surg,Quant Imaging Med Surg. 2023 Sep 1;13(9):5759-5769. doi: 10.21037/qims-22-1305. Epub 2023 Jul 18.

Zhu HB, Zhu HT, Jiang L, Nie P, Hu J, Tang W, Zhang XY, Li XT, Yao Q, Sun YS. Radiomics analysis from magnetic resonance imaging in predicting the grade of nonfunctioning pancreatic neuroendocrine tumors: a multicenter study,Eur Radiol,Eur Radiol. 2024 Jan;34(1):90-102. doi: 10.1007/s00330-023-09957-7.

Guan Z#, Li ZW#, Yang D, Yu T, Jiang HJ, Zhang XY*, Yan S, Hou W, Sun YS*. Small arteriole sign: an imaging feature for staging T4a colon cancer,Eur Radiol,2024 Jan;34(1):444-454.

Yang SX, Chen ML, Xie L, Zhu HB, Liu YL, Sun RJ, Zhao B, Deng XB, Li XT, Sun YS. Procedure-related pain during CT-guided percutaneous transthoracic needle biopsies of lung lesions: a prospective study,Cancer Imaging,Cancer Imaging. 2023 Jun 12;23(1):61. doi: 10.1186/s40644-023-00578-3.

Yan S, Li FP, Jian L, Zhu HT, Zhao B, Li XT, Shi YJ, Sun YS. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy,BMC Cancer,BMC Cancer. 2023 May 25;23(1):477. doi: 10.1186/s12885-023-10973-5.

Gu XL, Cui Y, Zhu HT, Li XT, Pei X, He XX, Yang L, Lu M, Li ZW, Sun YS. Discrimination of Liver Metastases of Digestive System Neuroendocrine Tumors From Neuroendocrine Carcinoma by Computed Tomography-Based Radiomics Analysis,J Comput Assist Tomogr,J Comput Assist Tomogr. 2023 May-Jun 01;47(3):361-368. doi: 10.1097/RCT.0000000000001443. Epub 2023 Mar 9.

Shi YJ, Zhu HT, Yan S, Li XT, Zhang XY, Sun YS. A CT-Based Radiomics Nomogram Model for Differentiating Primary Malignant Melanoma of the Esophagus from Esophageal Squamous Cell Carcinoma,Biomed Res Int,Biomed Res Int. 2023 Feb 20;2023:6057196. doi: 10.1155/2023/6057196. eCollection 2023.

Zhu HB, Xu D, Sun XF, Li XT, Zhang XY, Wang K, Xing BC, Sun YS. Prediction of hepatic lymph node metastases based on magnetic resonance imaging before and after preoperative chemotherapy in patients with colorectal liver metastases underwent surgical resection,Cancer Imaging,Cancer Imaging. 2023 Feb 21;23(1):18. doi: 10.1186/s40644-023-00529-y.

Li YL, Wang LZ, Shi QL, He YJ, Li JF, Zhu HT, Wang TF, Li XT, Fan ZQ, Ouyang T, Sun YS. CT Radiomics for Predicting Pathological Complete Response of Axillary Lymph Nodes in Breast Cancer After Neoadjuvant Chemotherapy: A Prospective Study,Oncologist,Oncologist. 2023 Apr 6;28(4):e183-e190. doi: 10.1093/oncolo/oyad010.

Shi YJ, Zhu HT, Li XT, Zhang XY, Liu YL, Wei YY, Sun YS. Histogram array and convolutional neural network of DWI for differentiating pancreatic ductal adenocarcinomas from solid pseudopapillary neoplasms and neuroendocrine neoplasms,Clin Imaging,Clin Imaging. 2023 Apr;96:15-22. doi: 10.1016/j.clinimag.2023.01.008. Epub 2023 Jan 26.

Shi YJ, Liu C, Wei YY, Li XT, Shen L, Lu ZH, Sun YS. Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy,Cancer Imaging,Cancer Imaging. 2022 Nov 4;22(1):62. doi: 10.1186/s40644-022-00490-2.

Gu XL, Cui Y, Wang K, Xing Q, Li XT, Zhu HT, Li ZW, Sun YS. Qualitative and quantitative parameters on hepatobiliary phase of gadoxetic acid-enhanced MR imaging for predicting pathological response to preoperative systemic therapy in colorectal liver metastases,Eur J Radiol,Eur J Radiol. 2022 Dec;157:110572. doi: 10.1016/j.ejrad.2022.110572. Epub 2022 Oct 28.

Zhu HB, Nie P, Jiang L, Hu J, Zhang XY, Li XT, Lu M, Sun YS. Preoperative prediction of lymph node metastasis in nonfunctioning pancreatic neuroendocrine tumors from clinical and MRI features: a multicenter study,Insights Imaging,Insights Imaging. 2022 Oct 8;13(1):162. doi: 10.1186/s13244-022-01301-9.

Yan S, Shi YJ, Liu C, Li XT, Zhao B, Wei YY, Shen L, Lu ZH, Sun YS. Quantitative CT evaluation after two cycles of induction chemotherapy to predict prognosis of patients with locally advanced oesophageal squamous cell carcinoma before undergoing definitive chemoradiotherapy/radiotherapy,Eur Radiol,Eur Radiol. 2023 Jan;33(1):380-390. doi: 10.1007/s00330-022-08994-y. Epub 2022 Aug 4.

Lu QY, Guan Z, Zhang XY, Li XT, Sun RJ, Li QY, Sun YS. Contrast-enhanced MRI for T Restaging of Locally Advanced Rectal Cancer Following Neoadjuvant Chemotherapy and Radiation Therapy,Radiology,Radiology. 2022 Nov;305(2):364-372. doi: 10.1148/radiol.212905. Epub 2022 Jul 19.

Shi YJ, Yang X, Yan S, Li XT, Wei YY, Zhang XY, Sun YS. Primary malignant melanoma of the esophagus: differentiation from esophageal squamous cell carcinoma and leiomyoma using dynamic contrast-enhanced CT findings,Abdom Radiol (NY),Abdom Radiol (NY). 2022 Aug;47(8):2747-2759. doi: 10.1007/s00261-022-03556-8. Epub 2022 Jun 6.

Sun XF, Zhu HT, Ji WY, Zhang XY, Li XT, Tang L, Sun YS. Preoperative prediction of malignant potential of 2-5 cm gastric gastrointestinal stromal tumors by computerized tomography-based radiomics,World J Gastrointest Oncol,World J Gastrointest Oncol. 2022 May 15;14(5):1014-1026. doi: 10.4251/wjgo.v14.i5.1014.

Shi YJ, Zhu HT, Li XT, Zhang XY, Wei YY, Yan S, Sun YS. Radiomics analysis based on multiple parameters MR imaging in the spine: Predicting treatment response of osteolytic bone metastases to chemotherapy in breast cancer patients,Magn Reson Imaging,Magn Reson Imaging. 2022 Oct;92:10-18. doi: 10.1016/j.mri.2022.05.012. Epub 2022 May 25.

Qu YH, He YJ, Li XT, Fan ZQ, Sun RJ, Wang X, Ouyang T, Sun YS. Preoperative MRI features predict failed breast-conserving surgery: construction of a predictive model,Transl Cancer Res,Transl Cancer Res. 2022 Apr;11(4):639-648. doi: 10.21037/tcr-21-1919.

Zhang XY, Liu XZ, Li XT, Wang L, Zhu HB, Sun RJ, Guan Z, Lu QY, Zhu HT, Wang WH, Li ZW, Wu AW, Sun YS. MRI measurements predict major low anterior resection syndrome in rectal cancer patients,Int J Colorectal Dis,Int J Colorectal Dis. 2022 Jun;37(6):1239-1249. doi: 10.1007/s00384-022-04169-9. Epub 2022 May 3.

Qi LP, Li XT, Ma ZM, Yang Y, Chen JF, Sun YS. Preoperative Patient and Lesion Features Are Valuable for Predicting the Prognosis of Resectable Peripheral Non-Small Cell Lung Cancer,J Comput Assist Tomogr,J Comput Assist Tomogr. 2022 Jul-Aug 01;46(4):584-592. doi: 10.1097/RCT.0000000000001317. Epub 2022 Apr 8.

Guan Z, Zhang XY, Li XT, Sun RJ, Lu QY, Wu AW, Sun YS. Correlation and prognostic value of CT-detected extramural venous invasion and pathological lymph-vascular invasion in colon cancer,Abdom Radiol (NY),Abdom Radiol (NY). 2022 Apr;47(4):1232-1243. doi: 10.1007/s00261-022-03414-7. Epub 2022 Feb 8.

Chen ML, Wei YY, Li XT, Qi LP, Sun YS. Low-dose spectral CT perfusion imaging of lung cancer quantitative analysis in different pathological subtypes,Transl Cancer Res,Transl Cancer Res. 2021 Jun;10(6):2841-2848. doi: 10.21037/tcr-20-3479.

Zhu HB, Xu D, Zhang XY, Li XT, Xing BC, Sun YS. Prediction of Therapeutic Effect to Treatment in Patients with Colorectal Liver Metastases Using Functional Magnetic Resonance Imaging and RECIST Criteria: A Pilot Study in Comparison between Bevacizumab-Containing Chemotherapy and Standard Chemotherapy,Ann Surg Oncol,Ann Surg Oncol. 2022 Jun;29(6):3938-3949. doi: 10.1245/s10434-021-11101-y. Epub 2022 Jan 11.

Zhu HT#, Zhang XY#, Shi YJ, Li XT, Sun YS*. The Conversion of MRI Data With Multiple b-Values into Signature-Like Pictures to Predict Treatment Response for Rectal Cancer,J Magn Reson Imaging,2022 Aug;56(2):562-569. doi: 10.1002/jmri.28033. Epub 2021 Dec 16.

Shi YJ, Liu BN, Li XT, Zhu HT, Wei YY, Zhao B, Sun SS, Sun YS, Hao CY. Establishment of a multi-parameters MRI model for predicting small lymph nodes metastases (<10?mm) in patients with resected pancreatic ductal adenocarcinoma,Abdom Radiol (NY),Abdom Radiol (NY). 2022 Sep;47(9):3217-3228. doi: 10.1007/s00261-021-03347-7. Epub 2021 Nov 20.

Zhu HT, Zhang XY, Shi YJ, Li XT, Sun YS. Automatic segmentation of rectal tumor on diffusion-weighted images by deep learning with U-Net,J Appl Clin Med Phys,J Appl Clin Med Phys. 2021 Sep;22(9):324-331. doi: 10.1002/acm2.13381. Epub 2021 Aug 3.

Shi YJ, Li XT, Zhang XY, Zhu HT, Liu YL, Wei YY, Sun YS. Non-gaussian models of 3-Tesla diffusion-weighted MRI for the differentiation of pancreatic ductal adenocarcinomas from neuroendocrine tumors and solid pseudopapillary neoplasms,Magn Reson Imaging,Magn Reson Imaging. 2021 Nov;83:68-76. doi: 10.1016/j.mri.2021.07.006. Epub 2021 Jul 24.

Zhang N, Li XT, Ma L, Fan ZQ, Sun YS. Application of deep learning to establish a diagnostic model of breast lesions using two-dimensional grayscale ultrasound imaging,Clin Imaging,Clin Imaging. 2021 Nov;79:56-63. doi: 10.1016/j.clinimag.2021.03.024. Epub 2021 Apr 19.

Zhu HC, Xu SX, Li XT, Guan Z, Li S, Sun YS. MRI T1 Contrast-Enhanced Signal Intensity Is a Prognostic Indicator of Imatinib Therapy in Desmoid-Type Fibromatosis,Front Oncol,Front Oncol. 2021 Mar 15;11:615986. doi: 10.3389/fonc.2021.615986. eCollection 2021.

Wang ZL, Li YL, Li XT, Tang L, Li ZY, Sun YS. Role of CT in the prediction of pathological complete response in gastric cancer after neoadjuvant chemotherapy,Abdom Radiol (NY),Abdom Radiol (NY). 2021 Jul;46(7):3011-3018. doi: 10.1007/s00261-021-02967-3. Epub 2021 Feb 10.

Zhao B, Zhu HT, Li XT, Shi YJ, Cao K, Sun YS. Predicting Lymph Node Metastasis Using Computed Tomography Radiomics Analysis in Patients With Resectable Esophageal Squamous Cell Carcinoma,J Comput Assist Tomogr,J Comput Assist Tomogr. 2021 Mar-Apr 01;45(2):323-329. doi: 10.1097/RCT.0000000000001125.

Zhu HB, Xu D, Ye M, Sun L, Zhang XY, Li XT, Nie P, Xing BC, Sun YS. Deep learning-assisted magnetic resonance imaging prediction of tumor response to chemotherapy in patients with colorectal liver metastases,Int J Cancer,Int J Cancer. 2021 Apr 1;148(7):1717-1730. doi: 10.1002/ijc.33427. Epub 2020 Dec 29.

Long R, Cao K, Cao M, Li XT, Gao F, Zhang FD, Yu YZ, Sun YS. Improving the Diagnostic Accuracy of Breast BI-RADS 4 Microcalcification-Only Lesions Using Contrast-Enhanced Mammography,Clin Breast Cancer,Clin Breast Cancer. 2021 Jun;21(3):256-262.e2. doi: 10.1016/j.clbc.2020.10.011. Epub 2020 Nov 2.

Ji Z, Cui Y, Peng Z, Gong J, Zhu HT, Zhang X, Li J, Lu M, Lu Z, Shen L, Sun YS. Use of Radiomics to Predict Response to Immunotherapy of Malignant Tumors of the Digestive System,Med Sci Monit,Med Sci Monit. 2020 Oct 20;26:e924671. doi: 10.12659/MSM.924671.

Wang ZL, Li YL, Tang L, Li XT, Bu ZD, Sun YS. Utility of the gastric window in computed tomography for differentiation of early gastric cancer (T1 stage) from muscularis involvement (T2 stage),Abdom Radiol (NY),Abdom Radiol (NY). 2021 Apr;46(4):1478-1486. doi: 10.1007/s00261-020-02785-z. Epub 2020 Sep 30.

Yu-Hong Qu#,Hai-Tao Zhu#,Kun Cao,Xiao-Ting Li,Meng Ye,Ying-Shi Sun*. Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning (DL) Method.,Thoracic Cancer,2020;11(3): 651-658.

Rui-Jia Sun, Lin Wang, Xiao-Ting Li, Qiao-Yuan Lu, Xiao-Yan Zhang, Zhen Guan, Ying-Shi Sun*. Baseline MRI detected lateral lymph node as a prognostic factor: a cohort study in pN0 low-risk rectal cancer.,Journal of Cancer Research and Clinical Oncology,2020;146(3):739-748

Xiao-Yan Zhang#, Lin Wang#, Hai-Tao Zhu, Zhong-Wu Li, Meng Ye, Xiao-Ting Li, Yan-Jie Shi, Hui-Ci Zhu, Ying-Shi Sun*. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.,Radiology,2020;296(1):56-64

北京市科学技术进步奖二等奖, 直肠癌疗效和预后评价的影像学技术创新与应用, 第1完成人, 北京市人民政府, 2023.10

中国抗癌协会科技奖二等奖, 胃肠道恶性肿瘤疗效和预后评价的影像关键技术创新与应用, 第1完成人, 中国抗癌协会, 2022.7

直肠癌疗效和预后评价的影像学技术创新与应用, 北京市科技进步奖, 第1完成人, 北京市人民政府, 2023.10

胃肠道恶性肿瘤疗效和预后评价的影像关键技术创新与应用, 中国抗癌协会科技奖, 第1完成人, 中国抗癌协会, 2022.7

多模态数据库构建、模型验证及临床应用推广, 课题负责人, 2023.12.1~2028.11.30, 国家重点研发计划

基于多模态融合自动分割的直肠癌疗效评价的端对端模型研究, 课题负责人, 2023.1.1~2026.12.31, 国家自然科学基金

直肠癌磁共振智能化结构式报告诊断系 统的多中心应用研究, 课题负责人, 2024.1.1~2026.12.31, 北京市卫健委首都卫生发展科研专项(重点攻关)

结直肠癌合并抑郁多模态磁共振脑改变及肠道菌群的关系——脑肠轴机制研究, 课题负责人, 2023.1.1~2025.12.31, 北京市自然科学基金

医学影像学团队, 课题负责人, 2020.1.29~2023.12.31, 登峰计划

项目名称:新型 MRI 梯度匀场系统研发/课题五:盆腔应用及磁共振模拟定位机应用研究, 课题负责人, 2019.12.1~2021.12.31, 国家重点研发计划

应用深度学习构建直肠癌区域淋巴结转移的影像辅助诊断模型, 课题负责人, 2020.1.1~2023.12.31, 国家自然科学基金

应用深度学习技术建立多模态直肠癌术前放化疗后肿瘤退缩分级的智能诊断模型, 课题负责人, 2020.1.1~2022.12.31, 国家自然科学基金重大研究计划

应用MR影像组学方法诊断直肠癌新辅助治疗后完全缓解的临床研究, 课题负责人, 2017.2.10~2020.3.31, 首都临床特色应用研究(Z171100001017102)

研究生招生计划
招生年度 招生专业 学位级别 学位类型 研究方向 选拔方式 操作
2025 放射影像学 长学制 专业学位 临床技能训练与研究 长学制二级学科培养

社会任职

  • 候任主委
  • 学系主任
  • 全国委员

学习、工作经历

  • 2007.8.1~2020.6.28,北京大学肿瘤医院 历任主治医师、讲师、副主任医师、副教授、主任医师、教授
  • 2004.9.1~2007.7.31,北京大学 影像医学与核医学 博士
  • 1996.8.1~2004.7.31,中国医科大学附属第一医院 历任住院医师、主治医师、讲师
  • 1996.8.1~1999.7.31,中国医科大学 影像医学与核医学 硕士
  • 1991.9.1~1996.7.31,中国医科大学 临床医学 本科